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Preliminary remark on the use of PMUs
Why the knowledge of synchrophasors (estimated by PMUs) 
is of importance for power systems ?
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Preliminary remark on the use of PMUs
Why the knowledge of synchrophasors (estimated by PMUs) 
is of importance for power systems ?
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Observation:

If the network structure is known together with the 
admittances that compose it, by knowing the voltages in 
module and phase in all the network nodes, it is possible 
to calculate all the other electrical quantities of interest, 
namely the power flows and currents injected or 
extracted from the nodes as well as the network losses 
and power/current flows along the lines. 

For this reason, the ‘problem of state estimation’ is 
practically equivalent to the determination of the phasors 
representing the voltages in all the network nodes (state 
variables).

The knowledge of the network state 4



1. Electrical network admittance matrix calculus

2. Power flow (or load flow) computation engine

3. State estimation calculus

Tools
Which tools do we need to perform a power system state 
estimation ?

5



Tools: State Estimation vs Load Flow
Until the late seventies, conventional load flow calculations provided 
the system state by directly using the raw measurements of voltage 
magnitudes and injected powers. However, in Load Flow:

§ the inputs are restricted to injected powers P, Q (at load buses) and 
P, V values (at voltage-controlled buses). 

§ In case that even one of these inputs becomes unavailable, it is 
impossible to get a solution of the load flow problem. Instead, the SE 
considers redundant measurements.

§ Additionally, gross errors in one or more of the inputs makes the 
computation of the load flow problem wrong.

Missing 
measurement

3 MW

1 MW 1.03 MW???

Inaccurate 
measurements

3 MW

1 MW 1.03 MW1.02 MW

Sum??

Bad
measurement

3 MW

1 MW 1.03 MW-1.02 MW
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Tools: State Estimation vs. Load Flow

Therefore, load flow theory has been combined with statistical 
estimation forming the so-called State Estimation:
ü Takes into account that the measurements (inputs) are noisy;
ü uses all types of measurements (e.g., voltage and current 

magnitudes, nodal injected and line flow powers, synchrophasors) 
and evaluates their consistency using the network model; 

ü employs novel tools, such as bad data detection and identification, 
in order to find and replace erroneous or missing measurements;

ü uses redundant information to improve its accuracy performance;
ü solves an optimization problem in order to determine the optimal 

estimate of the system state (accurate, reliable).

The output of load flow and state estimation is composed of the same kind 
of quantities, typically the voltage magnitude and phase at all network 
buses.

7



From the Physical Network to the 
Admittance Matrix - Introduction
A power system is essentially composed of:

q buses (or nodes), that can be distinguished in generator 
buses (corresponding to the generator terminals), reactive 
compensation buses (corresponding to the terminals of 
the synchronous compensators and the static 
compensators), interconnection buses (where more lines 
converge in order to form the «meshed» configuration) 
and load buses (which feed the equivalent loads seen 
from the High Voltage network);

q capacitor banks in shunt and in series connection;
q transformers;
q reactances, in shunt and in series connection;
q lines overhead and cables that link the various buses;
q …

8



From the Physical Network to the 
Admittance Matrix - Introduction

Hypothesis:
Ø network in permanent state of equilibrium, 
Ø network topology and parameters are constant, 
Ø constant load demands,
Ø electrical components are linear,
Ø the Network is symmetrical and balanced
In view of the above hypothesis the phase-to-ground 
voltages and currents can be derived at every point of 
the network using the direct sequence. Their frequency 
correspond to the electrical speed of the synchronous 
machines and the active and reactive powers appear 
constant at every given point of the network.
Therefore, the three-phase network can be studied 
using an equivalent one-phase network.

9



From the Physical Network to the 
Admittance Matrix - Introduction

We will deal with this study using the relative values à the 
represented voltages in such an one-phase equivalent 
circuit are either the phase-to-ground or the phase-to-
phase ones, therefore it is useful to apply the second 
ones given that the power flows in the circuit are the 
three-phase powers in per unit.

See lecture 2.2 and associated exercise.

10



From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

We consider a network linear, passive and reciprocal.

The network is characterized by m branches each one having a 
unique series admittance. In general, the value of such an admittance 
is considered, for simplicity, independent from the assumed voltage 
and current values (namely we neglect the inductive couplings 
between neighbouring lines, the parameter variations - for example 
resistances – with the temperature and, therefore, with the ambient 
temperature and the current, etc. ).

A network like this is characterized by s+1 buses, with g generator buses 
and u load buses, where the bus s+1 is the ‘neutral’ (return conductor 
in Fig. 1).   

11



Two-port 
equivalent
linear and 

passive

I1 I2

V2V1

A two-port network equivalent is passive if, in ‘open
circuit’, there are no voltages in the two couples of
terminal ports.
V1 = Z11I1 − Z12I2
V2 = Z21I1 − Z22I2

I1 = Y11V1 −Y12V2
−I2 = −Y21V1 +Y22V2

Z =
Z11 Z12
Z21 Z22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Impedance matrix 
in open circuit.

Y =
Y11 −Y12
−Y21 Y22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Admittance matrix 
in short circuit.

On the Two-Ports Network Equivalents 12



V1 = AV2 + BI2
I1 = CV2 + DI2

T = A B
C D

⎡

⎣
⎢

⎤

⎦
⎥

A = Z11
Z21

= Y22
Y21

B = Z11Z22 − Z12Z21
Z21

= 1
Y21

C = 1
Z21

= Y11Y22 −Y12Y21
Y21

D = Z22
Z21

= Y11
Y21

Z11 =
A
C

Z12 =
AD − BC

C

Z21 =
1
C

Z22 =
D
C

Y11 =
D
B

Y12 =
AD − BC

B

Y21 =
1
B

Y22 =
A
B

Z = − AD − BC −1
C

Y = AD − BC −1
B

(sui Doppi Bipoli)On the Two-Ports Network Equivalents 13



Symmetrical two-port 
network equivalents:

A = D
Z11 = Z22
Y11 = Y22

Two-port equivalent 
reciprocals:

AD − BC = 1
Z12 = Z21
Y12 = Y21

I1
V2 V1=0

= −I2
V1 V2=0

A −1
C

1
CV1

I1 I2

V2

D −1
C

!!
"
−

!
!

!!
"
−

(sui Doppi Bipoli)On the Two-Ports Network Equivalents

I1

V1

I2

V2
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Fig. 1. Representation of the generic node i and its connections.

From the Physical Network to the 
Admittance Matrix – The Nodal Analysis
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From the Physical Network to the 
Admittance Matrix – The Nodal Analysis
The problem that we would solve now (nodal analysis) is to find which are 
the relations between the node voltages and injected currents, 
considering the first as independent variables and the second as 
dependent variables.

For a generic network node i-th, the node voltage is indicated with     and 
with Īi the node-injected current (this last is the current delivered by a 
generator or absorbed by a load connected to the node). By 
convention, a current that is injected by a generator (into the network) is 
considered with positive sign and a current absorbed by a load is 
considered with negative sign. If a node has only the interconnection 
function (i.e. it does not have generators or loads connected to it), the 
corresponding injected current is, obviously, null. If more generators and 
loads are connected to a node, the node current is the algebraic sum of 
the corresponding complex currents. We indicate with ̅𝐼!" the current of 
the branch that connects the nodes 𝑖 and ℎ. The complex admittance 
between node nodes 𝑖 and ℎ is indicated with %𝑦!", whereas, with %𝑦!# we 
indicate the sum of the admittances existing between the node i and the 
neutral (ground).

Vi

16
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From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

With reference to the network represented in Fig. 1, the currents 
exiting from the node are:

I
io
= y

io
V
i

I
i1
= y

i1
(V

i
−V

1
)

…
I
is
= y

is
(V

i
−V

s
)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Applying the first Kirchhoff law to node i, we obtain:
I
i
= y

io
V
i
+ y

i1
(V

i
−V

1
)+…+ y

is
(V

i
−V

s
) =

  = (y
io
+ y

i1
+…+ y

is
)V

i
− y

i1
V
1
−…− y

is
V
s
=

  =(y
io
+ y

i1
+…+ y

is
)V

i
− y

il
V

l
l=1
l≠i

s

∑
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By setting

Y
ii
= y

io
+ y

i1
+…+ y

is
= y

il
l=0

s

∑

Y
i1
= −y

i1

…
Y
is
= −y

is

I
i
=Y

i1
V
1
+Y

i 2
V
2
+…+Y

ii
V
i
+…+Y

is
V
s
= Y

il
V

l
l=1

s

∑

we obtain

From the Physical Network to the 
Admittance Matrix – The Nodal Analysis
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From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

A similar equation can be written for all other nodes à

for the whole network
we can derive 
the following system:

I
1
=Y

11
V
1
+…+Y

1h
V
h
+…+Y

1s
V
s

…
I
h
=Y

h1
V
1
+…+Y

hh
V
h
+…+Y

hs
V
s

…
I
s
=Y

s1
V
1
+…+Y

sh
V
h
+…+Y

ss
V
s

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

in matrix 
formulation

I1
…
Ih
…
Is

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

Y11 … Y1h … Y1s
… … … … …
Yh1 … Yhh … Yhs
… … … … …
Ys1 … Ysh … Yss

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅

V1
…
Vh
…
Vs

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⇒ I⎡⎣ ⎤⎦= Y⎡⎣ ⎤⎦ V⎡⎣ ⎤⎦

is the so-called network admittance matrixY

19



From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

Ø a generic element out of the main diagonal, called trans-
admittance, is equal to the opposite of the admittance   of the 
branch that connects the nodes i and l:

Y
il
= −y

il
= I

i Vl=1

Vh=0 ∀h≠l

Ø a generic element    of the main diagonal, called self-
admittance,  is equal to the sum of all the admittances of the 
branches that are connected to node i including the ones with 
the neutral:

Y
ii
= y

io
+ y

il∑ = I
i Vi=1

Vl=0 ∀l≠i

where the summation is extended to all of the nodes connected to 
node i.

Properties of the nodal admittance matrix elements.
Y
il y

il

Y
ii

20



From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

Matrix Y is sparse. In case it is formed by real values, it is diagonal-
dominant because each of its diagonal elements, in absolute value, 
is not lower than the sum of the other elements in the same row. In 
AC circuits, however, this property does not hold.

Matrix Y is also symmetric if all the two-port elements that compose 
the network are reciprocal.

21



22Automated Construction of !𝐘:
Preliminaries
Consider a single-phase electrical network. Let the nodes be 
numbered as 𝑛 ∈ 𝒩 = 1,… ,𝑁 , and the ground as 𝑔 ∈ 𝒢 = {0}. Its 
topology is described by the branches ℓ! ∈ ℒ ⊆ 𝒩×𝒩 and the shunts 
𝓉" ∈ 𝒯 = 𝒩×𝒢.

The branches are associated with the longitudinal electrical 
parameters (i.e., the branch admittances 4𝑌ℓ!), and the shunts with 
the transversal electrical parameters (i.e., the shunt admittances 4𝑌𝓉") 
of the electrical network.

As we have seen, if the electrical network can be represented by a 
lumped element model (e.g., 𝜋-section equivalent circuits), then 

• 4𝑌ℓ! of ℓ! = (𝑚, 𝑛) is the sum of the admittances of the lumped 
elements connecting 𝑚 and 𝑛 (branch elements).

• 4𝑌𝓉" of 𝓉" = (𝑛, 𝑔) is the sum of the admittances of the lumped 
elements connecting 𝑛 and 𝑔 (shunt elements).



23Automated Construction of !𝐘:
The Primitive Admittance Matrices !Yℒ and !Y𝒯
The branch admittances 4𝑌ℓ! (ℓ! ∈ ℒ) compose the primitive branch 
admittance matrix :Yℒ. This matrix is diagonal

:Yℒ = diagℓ!∈ℒ 4𝑌ℓ! = diag 4𝑌ℓ# , … , 4𝑌ℓ|ℒ| =
4𝑌ℓ# ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 4𝑌ℓ|ℒ|

Analogously, the shunt admittances 4𝑌𝓉" (𝓉" ∈ 𝒯) compose the 
primitive shunt admittance matrix :𝐘𝒯, which is also diagonal

:Y𝒯 = diag𝓉"∈𝒯 4𝑌𝓉" = diag 4𝑌𝓉# , … , 4𝑌𝓉|𝒩| =
4𝑌𝓉# ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 4𝑌𝓉|𝒩|



24Automated Construction of !𝐘:
The Incidence Matrix 𝐀𝔅
The topology of the electrical grid is described by a directed graph 
𝔅 = (𝒩, ℒ), whose vertices are the nodes 𝒩, and whose edges are 
the branches ℒ.

The connectivity of this graph is defined by the edge-to-vertex 
incidence matrix 𝑨𝔅, whose elements 𝑎)* are given as follows

𝑎)* = G
+1
−1
0

(if ℓ! = (𝑛,⋅) ∈ ℒ)
(if ℓ! = (⋅, 𝑛) ∈ ℒ)

(otherwise)

That is, 𝑎)* = +1 if the branch ℓ! originates at the node 𝑛, and 𝑎)* =
− 1 if the branch ℓ! terminates at the node 𝑛. Observe that the rows 
of 𝐀𝔅 correspond to the vertices/branches, and the columns to the 
vertices/nodes.



25Automated Construction of !𝐘:
The Incidence Matrix 𝐀𝔅
Consider the example graph shown on 
the right-hand side.

It has the following incidence matrix

𝐀𝔅 =

+1 −1 0 0 0
+1 0 −1 0 0
+1 0 0 −1 0
+1 0 0 0 −1
0 +1 −1 0 0
0 +1 0 −1 0
0 0 +1 0 −1
0 0 0 +1 −1

2

1

5

4 3

1

2

4

3

56

8 7
Branches

1  2   3   4  5   6   7  8

Nodes
1        2       3       4      5



26Automated Construction of !𝐘:
The Nodal Admittance Matrix 𝐘

We can rewrite the Kirchhoff’s current law applied to the generic
node i of the grid as follows:

̅𝐼+ =V
)

̅𝐼+,-./
ℓ' −V

)

̅𝐼+,+*
ℓ' + ̅𝐼𝓉(

where ̅𝐼+,-./
ℓ'  is the “inner current” of Π-equivalent branch ℓ) leaving 

node 𝑖 and ̅𝐼+,+*
ℓ'  the ”inner current” of Π-equivalent branch ℓ) 

entering node 𝑖 and ̅𝐼𝓉( = ̅𝐼+- (rename of current flowing through the 
sum of shunts on node 𝑖.
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2 
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Īih 
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yi2
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V2 Vi Vh

Vs

̅𝐼!
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̅𝐼𝓉"



27Automated Construction of !𝐘:
The Nodal Admittance Matrix 𝐘
Therefore, from the definition of the incidence matrix 𝐀𝔅, we have:

𝐈̅ = 𝐀𝔅0 𝐈̅ℒ + 𝐈̅𝒯

Where 𝐈̅ℒ is the array of branch currents ̅𝐼+
ℓ' and 𝐈̅𝒯 the array of shunt 

currents ̅𝐼𝓉(.

Now, from Kirchhoff’s voltage law applied to ℓ) we can write:

̅𝐼+
ℓ' = 4𝑌ℓ' 4𝑉+ − 4𝑉1

and for all the branches we have:

𝐈̅ℒ = :𝐘ℒ𝐀𝔅:𝐕

For the shunts we can write 𝐈̅𝒯 as follows:

𝐈̅𝒯 = :𝐘𝒯:𝐕

Therefore, we have:

𝐈̅ = 𝐀𝔅0 𝐈̅ℒ + 𝐈̅𝒯 = 𝐀𝔅0 :𝐘ℒ𝐀𝔅 + :𝐘𝒯 :𝐕 → :𝐘 = 𝐀𝔅0 :𝐘ℒ𝐀𝔅 + :𝐘𝒯



28Automated Construction of !𝐘:
The Nodal Admittance Matrix 𝐘

:𝐘 = 𝐀𝔅0 :𝐘ℒ𝐀𝔅 + :𝐘𝒯
Note that 𝐀𝔅 describes the topology of the electrical network, while 
:𝐘ℒ and :𝐘𝒯 describe its electrical properties. A change in the 
topology only affects 𝐀𝔅, and a change in the parameters only 
affects :𝐘ℒ and/or :𝐘𝒯. If any of these matrices changes during the 
operation,:𝐘 can be updated easily using the above-stated formula. 



29Automated Construction of !𝐘:
The Nodal Admittance Matrix !𝐘
The diagonal elements 4𝑌** (𝑛 ∈ 𝒩) of :𝐘 are given by

4𝑌** = 4𝑌𝓉" + V
ℓ!2(*,⋅)

4𝑌ℓ! + V
ℓ!2(⋅,*)

4𝑌ℓ!

That is, the diagonal element at position 𝑛  is the sum of all 
branch/shunt admittances connected to the respective node.

The off-diagonal elements 4𝑌6* (𝑚, 𝑛 ∈ 𝒩, 𝑚 ≠ 𝑛) are given by

4𝑌6* = ^−
4𝑌ℓ!
0

(∃ℓ!= 𝑚, 𝑛 or ∃ℓ! = 𝑛,𝑚 )
(otherwise)

That is, the off-diagonal element at position 𝑚, 𝑛 is the negative of 
the corresponding branch admittance (if the branch exists).



30Analysis of Asymmetrical Power Systems:
Introduction
As discussed before, balanced power systems, whose lines are 
balanced and transposed, and whose loads are symmetrical, can 
be represented by equivalent positive-sequence circuits.

However, power distribution systems may be characterized by 
unbalanced non-transposed lines and asymmetrical loads. 
Therefore, they cannot be represented by positive-sequence 
components only.

In an asymmetrical power system, the sequence networks are 
coupled. That is, the flow of current in one sequence gives rise to 
voltage drops in all sequences. Therefore, the method of 
symmetrical components cannot be used.



31Analysis of Asymmetrical Power Systems:
Phase-Domain Model
Consider an unbalanced three-phase network. As the method of 
symmetrical components cannot be used, the three phases 
(denoted by 𝑎, 𝑏, 𝑐) need to be treated explicitly.

The electrical network is still described by an equation of the form 
𝐈̅ = :𝐘:𝐕. The vectors 𝐈̅ and :𝐕 contain the nodal current and voltage 
phasors of all phases in all nodes. Namely

𝐈̅ =
𝐈̅7
⋮
𝐈̅8

=

̅𝐼7,9
̅𝐼7,:
̅𝐼7,;
⋮
̅𝐼8,9
̅𝐼8,:
̅𝐼8,;

, :V =
:𝐕7
⋯
:𝐕8

=

4𝑉7,9
4𝑉7,:
4𝑉7,;
⋮
4𝑉8,9
4𝑉8,:
4𝑉8,;

In this case, :𝐘 is called compound nodal admittance matrix.



32Analysis of Asymmetrical Power Systems:
Compound Electrical Parameters
The branches and shunts of a three-phase network can be 
represented using compound electrical parameters.

Namely, branch admittance matrices :𝐘ℓ! (ℓ! ∈ ℒ), where

:𝐘ℓ! =

4𝑌ℓ!,99 4𝑌ℓ!,9: 4𝑌ℓ!,9;
4𝑌ℓ!,:9 4𝑌ℓ!,:: 4𝑌ℓ!,:;
4𝑌ℓ!,;9 4𝑌ℓ!,;: 4𝑌ℓ!,;;

and shunt admittance matrices :𝐘𝓉" (𝓉" ∈ 𝒯), where

:𝐘𝓉" =

4𝑌𝓉",99 4𝑌𝓉",9: 4𝑌𝓉",9;
4𝑌𝓉",:9 4𝑌𝓉",:: 4𝑌𝓉",:;
4𝑌𝓉",;9 𝑌𝓉",;: 4𝑌𝓉",;;

These matrices are usually symmetric or circulant.



33Analysis of Asymmetrical Power Systems:
Compound Nodal Admittance Matrix
In analogy to the single-phase case, define the block matrices

:𝐘ℒ = diagℓ!∈ℒ :𝐘ℓ! = diag :𝐘ℓ# , … , :𝐘ℓ|ℒ|
:𝐘𝒯 = diag𝓉"∈𝒯 :𝐘𝓉" = diag :𝐘𝓉# , … , :𝐘𝓉)

𝐀𝔅,!" = G
+𝐈<
−𝐈<
0

(if ℓ! = (𝑛,⋅) ∈ ℒ)
(if ℓ! = (⋅, 𝑛) ∈ ℒ)

(otherwise)

Where 𝐈< is an identity matrix of size 3×3. Then, :𝐘 can still be 
computed using the formula

:𝐘 = 𝐀𝔅0 :𝐘ℒ𝐀𝔅 + :𝐘𝒯
The only difference to the single-phase case is that :𝐘ℒ, 𝐀𝔅, and :𝐘𝒯 
are now block matrices. 


