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Preliminary remark on the use of PMUs n

Why the knowledge of synchrophasors (estimated by PMUs)
is of importance for power systems ?
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The knowledge of the network state n

Observation:

If the network structure is known together with the
admittances that compose it, by knowing the voltages in
module and phase in all the network nodes, it is possible
to calculate all the other electrical quantities of interest,
namely the power flows and currents injected or
extracted from the nodes as well as the network losses
and power/current flows along the lines.

For this reason, the ‘problem of state estimation’ is
practically equivalent to the determination of the phasors

representing the voltages in all the network nodes (state
variables).




Tools n

Which tools do we need to perform a power system state
estimation ?

1. Electrical network admittance matrix calculus
2. Power flow (or load flow) computation engine

3. State estimation calculus



Tools: State Estimation vs Load Flow n

Until the late seventies, conventional load flow calculations provided
the system state by directly using the raw measurements of voltage
magnitudes and injected powers. However, in Load Flow:

= the inputs are restricted to injected powers P, O (af load buses) and
P, V' values (at voltage-controlled buses).

= |n case that even one of these inputs becomes unavailable, it is
impossible to get a solution of the load flow problem. Instead, the SE
considers redundant measurements.

= Additionally, gross errors in one or more of the inputs makes the
computation of the load flow problem wrong.

Missing Inaccurate Bad
measurement measurements measurement
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Tools: State Estimation vs. Load Flow

Therefore, load flow theory has been combined with statistical
estimation forming the so-called State Estimation:

v
v

AN

Takes into account that the measurements (inputs) are noisy;

uses all types of measurements (e.g., voltage and current
magnitudes, nodal injected and line flow powers, synchrophasors)
and evaluates their consistency using the network model;

employs novel tools, such as bad data detection and identification,
in order to find and replace erroneous or missing measurements;

uses redundant information to improve its accuracy performance;

solves an optimization problem in order to determine the optimal
estimate of the system state (accurate, reliable).

The output of load flow and state estimation is composed of the same kind
of quantities, typically the voltage magnitude and phase at all network
buses.




From the Physical Network to the n
Admittance Matrix - Infroduction

A power system is essentially composed of:

o buses (or nodes), that can be distinguished in generator
buses (corresponding to the generator terminals), reactive
compensation buses (corresponding to the tferminals of
the synchronous compensators and the static
compensators), interconnection buses (where more lines
converge in order to form the «umeshedy» configuration)
and load buses (which feed the equivalent loads seen
from the High Voltage network);

capacitor banks in shunt and in series connection;
transformers;

reactances, in shunt and in series connection;

lines overhead and cables that link the various buses;

(N W N N



From the Physical Network to the n
Admittance Matrix - Infroduction

Hypothesis:

> network in permanent state of equilibrium,

> network topology and parameters are constant,

» constant load demands,

> electrical components are linear,

> the Network is symmetrical and balanced

In view of the above hypothesis the phase-to-ground
voltages and currents can be derived at every point of
the network using the direct sequence. Their frequency
correspond to the electrical speed of the synchronous
machines and the active and reactive powers appear
constant at every given point of the network.

Therefore, the three-phase neitwork can be studied
using an equivalent one-phase network.




From the Physical Network to the m
Admittance Matrix - Infroduction

We will deal with this study using the relative values - the
represented voltages in such an one-phase equivalent
circuit are either the phase-to-ground or the phase-to-
phase ones, therefore it is useful to apply the second
ones given that the power flows in the circuit are the
three-phase powers in per unit.

See lecture 2.2 and associated exercise.



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

We consider a network linear, passive and reciprocal.

A network like this is characterized by s+1 buses, with g generator buses

and u load buses, where the bus s+1 is the ‘neutral’ (retfurn conductor
in Fig. 1).

The network is characterized by m branches each one having a
unigue series admittance. In general, the value of such an admittance
is considered, for simplicity, independent from the assumed voltage
and current values (hamely we neglect the inductive couplings
between neighbouring lines, the parameter variations - for example
resistances — with the temperature and, therefore, with the ambient
temperature and the current, etfc. ).



On the Two-Ports Network Equivalents

I 4!
— Two-port —
Vi equivalent v,
— | linearand

passive

A two-port network equivalent is passive if, in ‘open
circuit’, there are no voltages in the two couples of

terminal ports.
Vi=2,1,-2,1,
V,=2,1,-2,1,

7 =

I, =Y,V,-Y,V,
—I,=-Y,Vi+1,V,

Y =

Impedance matrix

le Zl2
Z, Z, IN open Circuit.

Y, -Y, Admittance matrix
_Y21 Yzz

in short circuit.



On the Two-Ports Network Equivalents n

V.= AV, + BI, Tz{ A B }
I,=CV,+DI, Al _Y» D
Z, Y,
B= ZuZzz — 212221 — 1
2, Y,
C = 1 :Y11Y22_Y12Y21
Z, Y,
Z, Y,
Zn_é YH_%
C
DG , _AD-BC
Z,= C Z——AD_BC_I . B Y:AD—BC—l
I ) C _ L B
Z, =— Y, B
¢ A
Zzz_g Y, E



On the Two-Ports Network Equivalents

AD—-BC =1
Two-port equivalent i _ __12 7 —7
reciprocals: 1% V o
*n=0 g Y,=Y,
Vi [ a-1 D-1 I T
I— = — I, 1 ;\ = A
1 D—1 A1
Vi c V2 v 5 | P
A=D
Symmetrical two-port Z.=2Z,

network equivalents:



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis
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Fig. 1. Representation of the generic node i and its connection:s.



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

The problem that we would solve now (nodal analysis) is to find which are
the relations between the node voltages and injected currents,
considering the first as independent variables and the second as
dependent variables.

For a generic network node i-th, the node voltage is indicated with V., and
with I, the node-injected current (this last is the current delivered by a
generator or absorbed by a load connected to the node). By
convention, a current that is injected by a generator (into the network) is
considered with positive sign and a current absorbed by a load is
considered with negative sign. If a node has only the interconnection
function (i.e. it does not have generators or loads connected to it), the
corresponding injected current is, obviously, null. If more generators and
loads are connected to a node, the node current is the algebraic sum of
the corresponding complex currents. We indicate with I;, the current of
the branch that connects the nodes i and h. The complex admittance
between node nodes i and his indicated with y;;,, whereas, with y;, we
indicate the sum of the admittances existing between the node i and the
neutral (ground).




From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

With reference to the network represen’red in Fig. 1, the curren’rs

exiting from the node are: :
[ =3V
) 1,=7,0,-7)
I=3,0-7) o el o Vhl

Applying the first Kirchhoff law to node i, we obtain:
] yV+y (V V)+ (V—VS)=

=()_/io+)_/i1+"’+»)_/is)17i_)7i1[71 )_/V



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

By setting
Y =7 4V +..+7. =>7
Y, =-7,
Y ==y

we obtain
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From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

A similar equation can be written for all other nodes >

for the whole network
we can derive
the following system:

N

IN Matrix 1 YH
formulation

]h = th

i [s i Ysl

I

Z

D A TN 4 U o 7
[T 74t T et T
=YV 4. 4V 4. 4TV
Y, || 7
7,17 ==YV
roll 7

Y is the so-called network admittance matrix



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

Properties of the nodal admittance matrix elements.

» A generic eIemen’rYou’r of the main diagonal, called irans-

admittance, is equal fo the opposite of the admittance ), of the
branch that connects the nodes i and #

Y =-y, =1

V,-1

v, =0 Vh=¢

> a generic element Y of the main diagonal, called self-
admittance, is equal to the sum of all the admittances of the
branches that are connected to node i including the ones with

the neuftral:
Yii =—)_/io+2~)_/ié =[i

V=0 V=i

l

where the summation is extended to all of the nodes connected to
node i.



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

Matrix Y is sparse. In case it is formed by real values, it is diagonal-
dominant because each of its diagonal elements, in absolute value,
is not lower than the sum of the other elements in the same row. In
AC circuits, however, this property does not hold.

Matrix Y is also symmetric if all the two-port elements that compose
the network are reciprocal.



Automated Construction of Y: m
Preliminaries

Consider a single-phase electrical network. Let the nodes be
numbered asn e NV = {1, ..., N}, and the ground as g € G = {0}. Its
topology is described by the branches ¢, € L € N XN and the shunts
th €T = N XG.

The branches are associated with the longitudinal electrical
parameters (i.e., the branch admittances Y, ), and the shunts with
the transversal electrical parameters (i.e., the shunt admittances th)
of the electrical network.

As we have seen, if the electrical network can be represented by a
lumped element model (e.g., m-section equivalent circuits), then

* Y, of £x = (m,n)is the sum of the admittances of the lumped
elements connecting m and n (branch elements).

« Y, of £, = (n,g) is the sum of the admittances of the lumped
elements connecting n and g (shunt elements).



Automated Construction of Y:
The Primitive Admittance Matrices Y, and Y-

The branch admittances Y{)k (¢ € L) compose the primitive branch
admittance matrix Y. This matrix is diagonal

-Y{ﬁ 0
Y, = diag{’keﬁ(yfk) = diag ([17{)1, - Yflﬁll) | - .

0 zﬁm_
Analogously, the shunt admittances Y, (£, € T') compose the
primitive shunt admittance matrix Y-, which is also diagonal

'Ytl 0 ]
Yj" = diagtneT(Ytn) = diag([Ytl, ’Y’t|]\/”|]) = : | :

_() YtINI-



Automated Construction of Y: m
The Incidence Matrix Ag

The topology of the electrical grid is described by a directed graph
B = (N, L), whose vertices are the nodes V', and whose edges are
the branches L.

The connectivity of this graph is defined by the edge-to-vertex
incidence matrix Az, whose elements ay,, are given as follows

(+1 (f £ = () € L)
agn =4 —1(iffx = (vn) € L)
\ 0 (otherwise)

Thatis, ai, = +1 if the branch ¢, originates at the node n, and q,,, =
— 1 if the branch ¢y terminates at the node n. Observe that the rows
of Ag correspond to the vertices/branches, and the columns to the
vertices/nodes.




Automated Construction of Y:
The Incidence Matrix Ag

Consider the example graph shown on @
the right-hand side.
It has the following incidence matrix 6 1 0
Nodes
1 2 3 4 5 3
WAL . @050
+1 0 -1 O o™
+1 0 0 -1 0|ww 41
|41 0o o0 o0 -1|s2 8 7
A8=10 41 -1 0 0 n 9
0 +1 0 -1 0|2 (5)
0 O 4+1 0 -—-1|~
0 0 0O 41 -—-11o



Automated Construction of Y:
The Nodal Admittance Matrix Y

®
N

We can rewrite the Kirchhoff's current law applied to the generic
node i of the grid as follows:

_,gk
where Ii,out

node i and I_ffn the "inner current” of II-equivalent branch ¢,
entering node i and I, = I;, (rename of current flowing through the

sum of shunts on node i.

is the “inner current” of II-equivalent branch ¢, leaving



Automated Construction of Y:

The Nodal Admittance Matrix Y

Therefore, from the definition of the incidence matrix Ag, we have:
=A%l +1;

Where I, is the array of branch currents I_f" and Iy the array of shunt
currents I..

Now, from Kirchhoff's voltage law applied to ¢, we can write:

_fk
Ii

— Yfk(vi - Vh)
and for all the branches we have:
I, =Y AgV
For the shunts we can write I as follows:
Ir =YV
Therefore, we have:

i = A%iL + ig" = (A’%VLASB + ?g")v - ? = A%VLA% + Vg”



Automated Construction of Y: m
The Nodal Admittance Matrix Y

V — A%VLA% + VT

Note that Ag describes the topology of the electrical network, while
Y, and Y5 describe its electrical properties. A change in the
topology only affects Ag, and a change in the parameters only
affects Y, and/or Y. If any of these matrices changes during the
operation,Y can be updated easily using the above-stated formula.




Automated Construction of Y:
The Nodal Admittance Matrix Y

The diagonal elements Y,,,, (n € V') of Y are given by

Yon =Y + Z Y£k+ Z ng
tx=(n,) tx=(n)

That is, the diagonal element at position n is the sum of all
branch/shunt admittances connected to the respective node.

The off-diagonal elements Y,,,, (m,n € ', m # n) are given by

Voo —Y, (3tx= (m,n) or 34y = (n,m))
™o (otherwise)

That is, the off-diagonal element at position m,n is the negative of
the corresponding branch admittance (if the branch exists).



Analysis of Asymmetrical Power System:s:
Introduction

As discussed before, balanced power systems, whose lines are
balanced and transposed, and whose loads are symmetrical, can
be represented by equivalent positive-sequence circuits.

However, power distribution systems may be characterized by
unbalanced non-fransposed lines and asymmetrical loads.
Therefore, they cannot be represented by positive-sequence
components only.

In an asymmetrical power system, the sequence networks are
coupled. That is, the flow of current in one sequence gives rise to
voltage drops in all sequences. Therefore, the method of
symmetrical components cannot be used.



Analysis of Asymmetrical Power Systems:
Phase-Domain Model

Consider an unbalanced three-phase network. As the method of
symmetrical components cannot be used, the three phases
(denoted by a, b, c) need to be treated explicitly.

The electrical network is still described by an equation of the form
I = YV. The vectors I and V contain the nodal current and voltage

phasors of all phases in all nodes. Namely

_I_l,a_ _Vl,a_

I p Vi

i [L] Lel i1 | Vac
I=|:[=|: | V= =1 :
iN I_N,a VN I7N,OL
In b Vb

-I_N,c- —VN,C—

In this case, Y is called compound nodal admittance matrix.



Analysis of Asymmetrical Power Systems:
Compound Electrical Parameters

The branches and shunts of a three-phase network can be
represented using compound electrical parameters.

Namely, branch admittance matrices Y, (¢ € £), where

Yfk,aa Yfk,ab Yfk,ac
Yo, = |Yopa Yeoop Yo nc

_Yfk,ca Yfk,cb Yfk,cc |

and shunt admittance matrices Y, (t,, € T), where

Ytn,aa Ytn,ab Ytn,ac

Ye, = |Yeopa Yeoop Yeobe

_Ytn,ca Ytn,cb Ytn,cc_

These matrices are usually symmetric or circulant.




Analysis of Asymmetrical Power Systems:
Compound Nodal Admittance Matrix

In analogy fo the single-phase case, define the block matrices
VL = diagkaL(vfk) = diag([thﬂ '"’vflﬁll)
Y7 = diage, er(Ye,) = diag([Ye,, -, Yoy ])

(415 (if & = (n,") € L)
Agin =1 I3 (if fx = (-, n) € L)
\ 0 (otherwise)

Where 15 is an identity matrix of size 3x3. Then, Y can still be
computed using the formula

V — A%VLA% + VT

The only difference to the single-phase case is that Y;, Ag, and Y
are now block matrices.



